
CHAPTER 14. AUTOENCODERS

why the early results (,) are specialized to particular parametrizationsVincent 2011
where g (f (x)) − x may be obtained by taking the derivative of another function.
Kamyshanska and Memisevic 2015 Vincent 2011() generalized the results of () by
identifying a family of shallow autoencoders such that g(f (x)) − x corresponds to
a score for all members of the family.

So far we have described only how the denoising autoencoder learns to represent
a probability distribution. More generally, one may want to use the autoencoder as
a generative model and draw samples from this distribution. This will be described

later, in section .20.11

14.5.1.1 Historical Perspective

The idea of using MLPs for denoising dates back to the work of ()LeCun 1987

and (). () also used recurrent networks to denoiseGallinari et al. 1987 Behnke 2001
images. Denoising autoencoders are, in some sense, just MLPs trained to denoise.
However, the name “denoising autoencoder” refers to a model that is intended not
merely to learn to denoise its input but to learn a good internal representation
as a side effect of learning to denoise. This idea came much later (Vincent
et al., ,). The learned representation may then be used to pretrain a2008 2010
deeper unsupervised network or a supervised network. Like sparse autoencoders,
sparse coding, contractive autoencoders and other regularized autoencoders, the
motivation for DAEs was to allow the learning of a very high-capacity encoder
while preventing the encoder and decoder from learning a useless identity function.

Prior to the introduction of the modern DAE, Inayoshi and Kurita 2005()
explored some of the same goals with some of the same methods. Their approach

minimizes reconstruction error in addition to a supervised objective while injecting
noise in the hidden layer of a supervised MLP, with the objective to improve
generalization by introducing the reconstruction error and the injected noise.
However, their method was based on a linear encoder and could not learn function
families as powerful as can the modern DAE.

14.6 Learning Manifolds with Autoencoders

Like many other machine learning algorithms, autoencoders exploit the idea
that data concentrates around a low-dimensional manifold or a small set of such

manifolds, as described in section . Some machine learning algorithms exploit5.11.3
this idea only insofar as that they learn a function that behaves correctly on the
manifold but may have unusual behavior if given an input that is off the manifold.

515

 Ahmad Badary

CHAPTER 14. AUTOENCODERS

Autoencoders take this idea further and aim to learn the structure of the manifold.

To understand how autoencoders do this, we must present some important
characteristics of manifolds.

An important characterization of a manifold is the set of its tangent planes.
At a point x on a d-dimensional manifold, the tangent plane is given by d basis
vectors that span the local directions of variation allowed on the manifold. As
illustrated in figure , these local directions specify how one can change14.6 x
infinitesimally while staying on the manifold.

All autoencoder training procedures involve a compromise between two forces:

1. Learning a representation h of a training example x such that x can be
approximately recovered from h through a decoder. The fact that x is drawn
from the training data is crucial, because it means the autoencoder need
not successfully reconstruct inputs that are not probable under the data
generating distribution.

2. Satisfying the constraint or regularization penalty. This can be an architec-
tural constraint that limits the capacity of the autoencoder, or it can be
a regularization term added to the reconstruction cost. These techniques
generally prefer solutions that are less sensitive to the input.

Clearly, neither force alone would be useful—copying the input to the output
is not useful on its own, nor is ignoring the input. Instead, the two forces together
are useful because they force the hidden representation to capture information
about the structure of the data generating distribution. The important principle
is that the autoencoder can afford to represent only the variations that are needed
to reconstruct training examples. If the data generating distribution concentrates
near a low-dimensional manifold, this yields representations that implicitly capture

a local coordinate system for this manifold: only the variations tangent to the
manifold around x need to correspond to changes in h= f(x). Hence the encoder
learns a mapping from the input space x to a representation space, a mapping that
is only sensitive to changes along the manifold directions, but that is insensitive to
changes orthogonal to the manifold.

A one-dimensional example is illustrated in figure , showing that, by making14.7
the reconstruction function insensitive to perturbations of the input around the
data points, we cause the autoencoder to recover the manifold structure.

To understand why autoencoders are useful for manifold learning, it is in-
structive to compare them to other approaches. What is most commonly learned
to characterize a manifold is a representation of the data points on (or near)

516

CHAPTER 14. AUTOENCODERS

Figure 14.6: An illustration of the concept of a tangent hyperplane. Here we create a
one-dimensional manifold in 784-dimensional space. We take an MNIST image with 784
pixels and transform it by translating it vertically. The amount of vertical translation
defines a coordinate along a one-dimensional manifold that traces out a curved path
through image space. This plot shows a few points along this manifold. For visualization,
we have projected the manifold into two dimensional space using PCA. An n-dimensional
manifold has an n-dimensional tangent plane at every point. This tangent plane touches
the manifold exactly at that point and is oriented parallel to the surface at that point.
It defines the space of directions in which it is possible to move while remaining on
the manifold. This one-dimensional manifold has a single tangent line. We indicate an
example tangent line at one point, with an image showing how this tangent direction
appears in image space. Gray pixels indicate pixels that do not change as we move along
the tangent line, white pixels indicate pixels that brighten, and black pixels indicate pixels
that darken.

517

CHAPTER 14. AUTOENCODERS

x0 x 1 x2

x

0 0.

0 2.

0 4.

0 6.

0 8.

1 0.

r
x(
)

Identity

Optimal reconstruction

Figure 14.7: If the autoencoder learns a reconstruction function that is invariant to small
perturbations near the data points, it captures the manifold structure of the data. Here
the manifold structure is a collection of -dimensional manifolds. The dashed diagonal0
line indicates the identity function target for reconstruction. The optimal reconstruction
function crosses the identity function wherever there is a data point. The horizontal
arrows at the bottom of the plot indicate the r(x) − x reconstruction direction vector
at the base of the arrow, in input space, always pointing towards the nearest “manifold”
(a single datapoint, in the 1-D case). The denoising autoencoder explicitly tries to make
the derivative of the reconstruction function r(x) small around the data points. The
contractive autoencoder does the same for the encoder. Although the derivative of r(x) is
asked to be small around the data points, it can be large between the data points. The
space between the data points corresponds to the region between the manifolds, where
the reconstruction function must have a large derivative in order to map corrupted points
back onto the manifold.

the manifold. Such a representation for a particular example is also called its
embedding. It is typically given by a low-dimensional vector, with less dimensions
than the “ambient” space of which the manifold is a low-dimensional subset. Some
algorithms (non-parametric manifold learning algorithms, discussed below) directly
learn an embedding for each training example, while others learn a more general
mapping, sometimes called an encoder, or representation function, that maps any
point in the ambient space (the input space) to its embedding.

Manifold learning has mostly focused on unsupervised learning procedures that

attempt to capture these manifolds. Most of the initial machine learning research
on learning nonlinear manifolds has focused on non-parametric methods based
on the nearest-neighbor graph . This graph has one node per training example
and edges connecting near neighbors to each other. These methods (Schölkopf
et al., ;1998 Roweis and Saul 2000 Tenenbaum 2000 Brand 2003 Belkin, ; et al., ; , ;

518

CHAPTER 14. AUTOENCODERS

Figure 14.8: Non-parametric manifold learning procedures build a nearest neighbor graph
in which nodes represent training examples a directed edges indicate nearest neighbor
relationships. Various procedures can thus obtain the tangent plane associated with a
neighborhood of the graph as well as a coordinate system that associates each training
example with a real-valued vector position, or embedding. It is possible to generalize
such a representation to new examples by a form of interpolation. So long as the number
of examples is large enough to cover the curvature and twists of the manifold, these
approaches work well. Images from the QMUL Multiview Face Dataset (,Gong et al.
2000).

and Niyogi 2003 Donoho and Grimes 2003 Weinberger and Saul 2004 Hinton, ; , ; , ;
and Roweis 2003 van der Maaten and Hinton 2008, ; ,) associate each of nodes with a
tangent plane that spans the directions of variations associated with the difference
vectors between the example and its neighbors, as illustrated in figure .14.8

A global coordinate system can then be obtained through an optimization or
solving a linear system. Figure illustrates how a manifold can be tiled by a14.9
large number of locally linear Gaussian-like patches (or “pancakes,” because the
Gaussians are flat in the tangent directions).

However, there is a fundamental difficulty with such local non-parametric
approaches to manifold learning, raised in (): if theBengio and Monperrus 2005
manifolds are not very smooth (they have many peaks and troughs and twists),

one may need a very large number of training examples to cover each one of

519

CHAPTER 14. AUTOENCODERS

Figure 14.9: If the tangent planes (see figure) at each location are known, then they14.6
can be tiled to form a global coordinate system or a density function. Each local patch
can be thought of as a local Euclidean coordinate system or as a locally flat Gaussian, or
“pancake,” with a very small variance in the directions orthogonal to the pancake and a
very large variance in the directions defining the coordinate system on the pancake. A
mixture of these Gaussians provides an estimated density function, as in the manifold
Parzen window algorithm (,) or its non-local neural-net basedVincent and Bengio 2003
variant (,).Bengio et al. 2006c

these variations, with no chance to generalize to unseen variations. Indeed, these
methods can only generalize the shape of the manifold by interpolating between
neighboring examples. Unfortunately, the manifolds involved in AI problems can

have very complicated structure that can be difficult to capture from only local
interpolation. Consider for example the manifold resulting from translation shown
in figure . If we watch just one coordinate within the input vector,14.6 xi, as the
image is translated, we will observe that one coordinate encounters a peak or a
trough in its value once for every peak or trough in brightness in the image. In
other words, the complexity of the patterns of brightness in an underlying image
template drives the complexity of the manifolds that are generated by performing
simple image transformations. This motivates the use of distributed representations
and deep learning for capturing manifold structure.

520

