1.2 Bias-Variance Analysis

Let’s justify this reasoning formally for k-NN applied to regression tasks. Suppose we are given
a training dataset D = {(x;,v;)}!,, where the labels y; are real valued scalars. We model our
hypothesis h(z) as

h(z) = % > NG 7 k)

where the function N is defined as

if x; is one of the £ closest points to z

0 ow.

N(x;,z, k) = {yz

Suppose also we assume our labels y; = f(x;) + ¢, where € is the noise that comes from N (0, 02)
and f is the true function. Without loss of generality, let x; ... Xy be the k closest points. Let’s
first derive the bias® of our model for the given dataset D.
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When k — oo, then Zle f(x;) goes to the average label for x. When k& = 1, then the bias is
simply f(x;) — f(z). Assuming x; is close enough to f(z), the bias would likely be small when
k = 1 since it’s likely to share a similar label. Meanwhile, when & — o0, the bias doesn’t depend
on the training points at all which like will restrict it to be higher.

Now, let’s derive the variance of our model.
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The variance goes to 0 when & — o0, and is maximized at k£ = 1.
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