
1.2 Bias-Variance Analysis
Let’s justify this reasoning formally for k-NN applied to regression tasks. Suppose we are given
a training dataset D = {(xi, yi)}ni=1, where the labels yi are real valued scalars. We model our
hypothesis h(z) as
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Suppose also we assume our labels yi = f(xi) + ε, where ε is the noise that comes from N (0, σ2)
and f is the true function. Without loss of generality, let x1 . . .xk be the k closest points. Let’s
first derive the bias2 of our model for the given dataset D.
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When k −→ ∞, then 1
k

∑k
i=1 f(xi) goes to the average label for x. When k = 1, then the bias is

simply f(x1) − f(z). Assuming x1 is close enough to f(z), the bias would likely be small when
k = 1 since it’s likely to share a similar label. Meanwhile, when k −→∞, the bias doesn’t depend
on the training points at all which like will restrict it to be higher.

Now, let’s derive the variance of our model.
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The variance goes to 0 when k −→∞, and is maximized at k = 1.
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