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             This value can then be used directly to compare two models as described in
 equation .18.39

  If the distribution p0   is close to p1         , equation can be an effective way of18.44
          estimating the partition function (Minka 2005, ). Unfortunately, most of the time

p1          is both complicated (usually multimodal) and defined over a high-dimensional
       space. It is difficult to find a tractable p0       that is simple enough to evaluate while

    still being close enough to p1       to result in a high-quality approximation. If p0 and
p1      are not close, most samples from p0     will have low probability under p1 and

          therefore make (relatively) negligible contributions to the sum in equation .18.44

          Having few samples with significant weights in this sum will result in an
             estimator that is of poor quality because of high variance. This can be understood

         quantitatively through an estimate of the variance of our estimate Ẑ1:
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             This quantity is largest when there is significant deviation in the values of the

 importance weights p̃1(x
( )k )

p̃0(x( )k )
.

            We now turn to two related strategies developed to cope with the challeng-
          ing task of estimating partition functions for complex distributions over high-

       dimensional spaces: annealed importance sampling and bridge sampling. Both
          start with the simple importance sampling strategy introduced above, and both

       attempt to overcome the problem of the proposal p0    being too far from p1 by
         introducing intermediate distributions that attempt to betweenbridge the gap p0

 and p1.

   18.7.1 Annealed Importance Sampling

  In situations where DKL(p0p1          ) is large (i.e., where there is little overlap between
p0 and p1    ), a strategy called   annealed importance sampling  (AIS) attempts
          to bridge the gap by introducing intermediate distributions ( , ; ,Jarzynski 1997 Neal

     2001). Consider a sequence of distributions pη0      , . . . , pηn   , with 0 = η0  < η1   < <· · ·
ηn−1  < ηn            = 1 so that the first and last distributions in the sequence are p0 and
p1  , respectively.
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           This approach enables us to estimate the partition function of a multimodal
          distribution defined over a high-dimensional space (such as the distribution defined

              by a trained RBM). We begin with a simpler model with a known partition function
              (such as an RBM with zeros for weights) and estimate the ratio between the two

           model’s partition functions. The estimate of this ratio is based on the estimate
              of the ratios of a sequence of many similar distributions, such as the sequence of

         RBMs with weights interpolating between zero and the learned weights.

     We can now write the ratio Z1
Z0

as

Z1
Z0

=
Z1
Z0

Zη 1
Zη 1
· · · Zηn−1

Zηn−1

(18.47)
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Zηn−2
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(18.48)

=

n−1

j=0

Zηj+1
Zηj

 . (18.49)

  Provided the distributions pηj and pηj+1    , for all 0     ≤ ≤ −j n   1, are sufficiently

        close, we can reliably estimate each of the factors
Zη j+1
Zηj

  using simple importance

         sampling and then use these to obtain an estimate of Z1Z0 .

          Where do these intermediate distributions come from? Just as the original
 proposal distribution p0          is a design choice, so is the sequence of distributions

pη1    . . . pηn−1             . That is, it can be specifically constructed to suit the problem domain.
           One general purpose and popular choice for the intermediate distributions is to
        use the weighted geometric average of the target distribution p1   and the starting

         proposal distribution (for which the partition function is known) p0:

pηj  ∝ pηj1 p
1−ηj
0  . (18.50)

            In order to sample from these intermediate distributions, we define a series of
   Markov chain transition functions Tηj(x

  | x     ) that define the conditional probability
   distribution of transitioning to x     given we are currently at x   . The transition

 operator Tηj(x
       | x) is defined to leave pηj  ( )x invariant:

pηj ( ) =x


pηj (x

)Tηj   (x x|   ) dx  . (18.51)

           These transitions may be constructed as any Markov chain Monte Carlo method
       (e.g., Metropolis-Hastings, Gibbs), including methods involving multiple passes

         through all the random variables or other kinds of iterations.
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  The AIS sampling strategy is then to generate samples from p0 and use
         the transition operators to sequentially generate samples from the intermediate

          distributions until we arrive at samples from the target distribution p1:

       • for k . . .K= 1

  – Sample x ( )kη1  ∼ p0( )x

  – Sample x ( )kη2  ∼ Tη1 (x
( )k
η2  | x

( )k
η1 )

   – . . .

  – Sample x ( )kηn−1  ∼ T ηn−2(x
( )k
ηn−1  | x

( )k
ηn−2)

  – Sample x ( )kηn  ∼ Tηn−1(x
( )k
ηn  | x

( )k
ηn−1 )

 • end

 For sample k           , we can derive the importance weight by chaining together the
          importance weights for the jumps between the intermediate distributions given in

 equation :18.49
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η2 )
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  . . .
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1 )
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ηn )

 . (18.52)

            To avoid numerical issues such as overflow, it is probably best to compute  logw( )k by
       adding and subtracting log probabilities, rather than computing w( )k  by multiplying

  and dividing probabilities.

          With the sampling procedure thus defined and the importance weights given
             in equation , the estimate of the ratio of partition functions is given by:18.52

Z1
Z0
≈ 1

K

K

k=1

w( )k  . (18.53)

           To verify that this procedure defines a valid importance sampling scheme, we
           can show ( , ) that the AIS procedure corresponds to simple importanceNeal 2001

            sampling on an extended state space, with points sampled over the product space
[xη1      , . . . ,xηn−1  ,x1            ]. To do this, we define the distribution over the extended space
as

p̃(xη1      , . . . ,xηn−1  ,x1  ) (18.54)

 = p̃1 (x1)T̃ηn−1(xηn−1  | x1)T̃ηn−2(xηn−2  | xηn−1    ) . . . T̃η1(xη1  | xη2  ), (18.55)
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where T̃a         is the reverse of the transition operator defined by Ta   (via an application
  of Bayes’ rule):

T̃a(x
  | x) =

pa(x)

pa( )x
Ta   (x x| ) =

p̃a(x )

p̃a( )x
Ta   (x x|   ). (18.56)

            Plugging the above into the expression for the joint distribution on the extended
       state space given in equation , we get:18.55
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(18.59)

           We now have means of generating samples from the joint proposal distribution
q             over the extended sample via a sampling scheme given above, with the joint

  distribution given by

q(xη 1      , . . . ,xηn−1  ,x1) = p0(xη1)Tη1(xη2  | xη1     ) . . . Tηn−1(x1  | xηn−1  ). (18.60)

             We have a joint distribution on the extended space given by equation . Taking18.59
q(xη1      , . . . ,xηn−1  ,x1           ) as the proposal distribution on the extended state space from

           which we will draw samples, it remains to determine the importance weights:

w( )k =
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 . (18.61)

              These weights are the same as proposed for AIS. Thus we can interpret AIS as
           simple importance sampling applied to an extended state, and its validity follows

      immediately from the validity of importance sampling.

         Annealed importance sampling was first discovered by ( ) andJarzynski 1997
          then again, independently, by ( ). It is currently the most commonNeal 2001
          way of estimating the partition function for undirected probabilistic models. The

              reasons for this may have more to do with the publication of an influential paper
         (Salakhutdinov and Murray 2008, ) describing its application to estimating the

          partition function of restricted Boltzmann machines and deep belief networks than
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           with any inherent advantage the method has over the other method described
below.

            A discussion of the properties of the AIS estimator (e.g., its variance and
      efficiency) can be found in ( ).Neal 2001

  18.7.2 Bridge Sampling

           Bridge sampling ( , ) is another method that, like AIS, addresses theBennett 1976
          shortcomings of importance sampling. Rather than chaining together a series of
        intermediate distributions, bridge sampling relies on a single distribution p∗  , known

           as the bridge, to interpolate between a distribution with known partition function,
p0    , and a distribution p1          for which we are trying to estimate the partition function
Z1.

    Bridge sampling estimates the ratio Z1/Z0       as the ratio of the expected impor-
   tance weights between p̃0  and p̃∗   and between p̃1  and p̃∗:

Z1
Z0
≈

K
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p̃∗(x
( )k
0 )

p̃0(x
( )k
0 )


K

k=1
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( )k
1 )

p̃1(x
( )k
1 )

 . (18.62)

   If the bridge distribution p∗          is chosen carefully to have a large overlap of support
 with both p0 and p1          , then bridge sampling can allow the distance between two

   distributions (or more formally, DKL(p0p1        )) to be much larger than with standard
 importance sampling.

           It can be shown that the optimal bridging distribution is given by p
( )opt
∗ (x)∝

p̃0( )˜x p1( )x
rp̃0( )+˜x p1( )x

 , where r = Z1/Z0          . At first, this appears to be an unworkable solution
             as it would seem to require the very quantity we are trying to estimate, Z1/Z0.

          However, it is possible to start with a coarse estimate of r    and use the resulting
           bridge distribution to refine our estimate iteratively ( , ). That is, weNeal 2005

             iteratively reestimate the ratio and use each iteration to update the value of .r

  Linked importance sampling        Both AIS and bridge sampling have their ad-
 vantages. If DKL(p0p1      ) is not too large (because p0 and p1   are sufficiently close),

             bridge sampling can be a more effective means of estimating the ratio of partition
              functions than AIS. If, however, the two distributions are too far apart for a single

distribution p∗             to bridge the gap, then one can at least use AIS with potentially
       many intermediate distributions to span the distance between p0 and p1  . Neal
           ( ) showed how his linked importance sampling method leveraged the power of2005

           the bridge sampling strategy to bridge the intermediate distributions used in AIS
       and significantly improve the overall partition function estimates.
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