
     CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

          Using the supervised task of classifying between training samples and generated
            samples (with the model energy function used in defining the classifier) to provide

             a gradient on the model was introduced earlier in various forms (Welling et al.,
  2003b Bengio 2009; , ).

    Noise contrastive estimation is based on the idea that a good generative
       model should be able to distinguish data from noise. A closely related idea

          is that a good generative model should be able to generate samples that no
          classifier can distinguish from data. This idea yields generative adversarial networks
 (section ).20.10.4

    18.7 Estimating the Partition Function

            While much of this chapter is dedicated to describing methods that avoid needing
     to compute the intractable partition function Z(θ     ) associated with an undirected

           graphical model, in this section we discuss several methods for directly estimating
  the partition function.

           Estimating the partition function can be important because we require it if
             we wish to compute the normalized likelihood of data. This is often important in

         evaluating the model, monitoring training performance, and comparing models to
 each other.

       For example, imagine we have two models: model MA   defining a probabil-
 ity distribution pA(x;θA  ) = 1

ZA
p̃A(x;θA   ) and modelMB   defining a probability

distribution pB(x; θB  ) = 1
ZB
p̃B(x;θB        ). A common way to compare the models

             is to evaluate and compare the likelihood that both models assign to an i.i.d.
       test dataset. Suppose the test set consists of m examples {x(1)      , . . . ,x( )m }  . If

i pA(x( )i  ;θA) >

i pB (x( )i  ;θB    ), or equivalently if



i

 log pA (x( )i  ;θA  )−


i

 log pB (x( )i  ;θB   ) 0> , (18.38)

   then we say thatMA     is a better model thanMB        (or, at least, it is a better model
              of the test set), in the sense that it has a better test log-likelihood. Unfortunately,

          testing whether this condition holds requires knowledge of the partition function.
          Indeed, equation seems to require evaluating the log-probability that the18.38

            model assigns to each point, which in turn requires evaluating the partition function.
             We can simplify the situation slightly by rearranging equation into a form in18.38
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             which we need to know only the of the two model’s partition functions:ratio



i

 log pA(x( )i  ;θA)−


i

 log pB(x( )i  ;θB ) =


i



log
p̃A(x( )i  ;θA)

p̃B (x( )i  ;θB)


 −m log

Z(θA)

Z(θB)
.

(18.39)
    We can thus determine whether MA     is a better model thanMB  without knowing
              the partition function of either model but only their ratio. As we will see shortly,
            we can estimate this ratio using importance sampling, provided that the two models
 are similar.

             If, however, we wanted to compute the actual probability of the test data under
eitherMA orMB            , we would need to compute the actual value of the partition

           functions. That said, if we knew the ratio of two partition functions, r = Z(θB)
Z(θA)

,
            and we knew the actual value of just one of the two, say Z (θA    ), we could compute
    the value of the other:

Z(θB ) = (rZ θA) =
Z(θB )

Z(θA )
Z(θA  ). (18.40)

           A simple way to estimate the partition function is to use a Monte Carlo
           method such as simple importance sampling. We present the approach in terms

            of continuous variables using integrals, but it can be readily applied to discrete
           variables by replacing the integrals with summation. We use a proposal distribution

p0(x) = 1
Z0
p̃0(x         ), which supports tractable sampling and tractable evaluation of

    both the partition function Z0     and the unnormalized distribution p̃0 ( )x .

Z1 =


p̃1   ( )x dx (18.41)

=


p0( )x

p0( )x
p̃1   ( )x dx (18.42)

= Z0


p0( )x

p̃1 ( )x

p̃0 ( )x
 d ,x (18.43)

Ẑ1 =
Z0
K

K

k=1

p̃1(x
( )k )

p̃0(x ( )k )
  s t :. . x ( )k  ∼ p0  . (18.44)

         In the last line, we make a Monte Carlo estimator, Ẑ1      , of the integral using samples
 drawn from p0(x            ), and then weight each sample with the ratio of the unnormalized

p̃1    and the proposal p0.

     This approach also allows us to estimate the ratio between the partition
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 functions as
1

K

K

k=1

p̃1(x( )k )

p̃0(x( )k )
  s t :. . x( )k  ∼ p0  . (18.45)

             This value can then be used directly to compare two models as described in
 equation .18.39

  If the distribution p0   is close to p1         , equation can be an effective way of18.44
          estimating the partition function (Minka 2005, ). Unfortunately, most of the time

p1          is both complicated (usually multimodal) and defined over a high-dimensional
       space. It is difficult to find a tractable p0       that is simple enough to evaluate while

    still being close enough to p1       to result in a high-quality approximation. If p0 and
p1      are not close, most samples from p0     will have low probability under p1 and

          therefore make (relatively) negligible contributions to the sum in equation .18.44

          Having few samples with significant weights in this sum will result in an
             estimator that is of poor quality because of high variance. This can be understood

         quantitatively through an estimate of the variance of our estimate Ẑ1:

V̂ar

Ẑ1


=
Z0

K2

K

k=1


p̃1(x

( )k )

p̃0(x( )k )
− Ẑ1

2
 . (18.46)

             This quantity is largest when there is significant deviation in the values of the

 importance weights p̃1(x
( )k )

p̃0(x( )k )
.

            We now turn to two related strategies developed to cope with the challeng-
          ing task of estimating partition functions for complex distributions over high-

       dimensional spaces: annealed importance sampling and bridge sampling. Both
          start with the simple importance sampling strategy introduced above, and both

       attempt to overcome the problem of the proposal p0    being too far from p1 by
         introducing intermediate distributions that attempt to betweenbridge the gap p0

 and p1.

   18.7.1 Annealed Importance Sampling

  In situations where DKL(p0p1          ) is large (i.e., where there is little overlap between
p0 and p1    ), a strategy called   annealed importance sampling  (AIS) attempts
          to bridge the gap by introducing intermediate distributions ( , ; ,Jarzynski 1997 Neal

     2001). Consider a sequence of distributions pη0      , . . . , pηn   , with 0 = η0  < η1   < <· · ·
ηn−1  < ηn            = 1 so that the first and last distributions in the sequence are p0 and
p1  , respectively.
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