CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

18.4 Score Matching and Ratio Matching

Score matching ( : ) provides another consistent means of training a
model without estimating Z or its derivatives. The name score matching comes
from terminology in which the derivatives of a log density with respect to its
argument, Vg logp(x), are called its score. The strategy used by score matching
is to minimize the expected squared difference between the derivatives of the
model’s log density with respect to the input and the derivatives of the data’s log
density with respect to the input:

1
L(x,0) = 9 ||V 10g pmodel (25 6), — Ve Ingdata(m)H%v (18.22)
1
J(0) = 3 Fpoca () L (T, 0), (18.23)
0" = mgn J(0). (18.24)

This objective function avoids the difficulties associated with differentiating
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CHAPTER 18. CONFRONTING THE PARTITION FUNCTION

the partition function Z because Z is not a function of « and therefore V2 = 0.
Initially, score matching appears to have a new difficulty: computing the score
of the data distribution requires knowledge of the true distribution generating
the training data, pgata. Fortunately, minimizing the expected value of L(x, 0) is
equivalent to minimizing the expected value of

n 2
z(wa 0) = Z (82 1ngmodel (:B; 0) +% (i 1ngmodel(cc; 9)) ) ) (1825)
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where n is the dimensionality of x.

Because score matching requires taking derivatives with respect to x, it is not
applicable to models of discrete data but the latent variables in the model may be
discrete.

Like pseudolikelihood, score matching only works when we are able to evaluate
log p(x) and its derivatives directly. It is not compatible with methods that provide
only a lower bound on log p(x), because score matching requires the derivatives
and second derivatives of log p(x), and a lower bound conveys no information about
its derivatives. This means that score matching cannot be applied to estimating
models with complicated interactions between the hidden units, such as sparse
coding models or deep Boltzmann machines. While score matching can be used
to pretrain the first hidden layer of a larger model, it has not been applied as
a pretraining strategy for the deeper layers of a larger model. This is probably
because the hidden layers of such models usually contain some discrete variables.

While score matching does not explicitly have a negative phase, it can be
viewed as a version of contrastive divergence using a specific kind of Markov chain
( , ). The Markov chain in this case is not Gibbs sampling, but
rather a different approach that makes local moves guided by the gradient. Score
matching is equivalent to CD with this type of Markov chain when the size of the
local moves approaches zero.

( ) generalized score matching to the discrete case (but made an error in
the derivation that was corrected by [2010]). ( ) found
that generalized score matching (GSM) does not work in high-dimensional
discrete spaces where the observed probability of many events is 0.

A more successful approach to extending the basic ideas of score matching
to discrete data is ratio matching ( , ). Ratio matching applies
specifically to binary data. Ratio matching consists of minimizing the average over
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examples of the following objective function:

2
n

1
(RM) _ E :
L (m, 9) o pmodel(w;o) ’ (1826)
1 Pmodel (f(waj)ae)

j=1

where f(x,7) returns x with the bit at position j flipped. Ratio matching avoids
the partition function using the same trick as the pseudolikelihood estimator: in a
ratio of two probabilities, the partition function cancels out. ( )
found that ratio matching outperforms SML, pseudolikelihood and GSM in terms
of the ability of models trained with ratio matching to denoise test set images.

Like the pseudolikelihood estimator, ratio matching requires n evaluations of p
per data point, making its computational cost per update roughly n times higher
than that of SML.

As with the pseudolikelihood estimator, ratio matching can be thought of as
pushing down on all fantasy states that have only one variable different from a
training example. Since ratio matching applies specifically to binary data, this
means that it acts on all fantasy states within Hamming distance 1 of the data.

Ratio matching can also be useful as the basis for dealing with high-dimensional

sparse data, such as word count vectors. This kind of data poses a challenge for
MCMC-based methods because the data is extremely expensive to represent in
dense format, yet the MCMC sampler does not yield sparse values until the model
has learned to represent the sparsity in the data distribution.
( ) overcame this issue by designing an unbiased stochastic approximation to
ratio matching. The approximation evaluates only a randomly selected subset of
the terms of the objective and does not require the model to generate complete
fantasy samples.

See ( ) for a theoretical analysis of the asymptotic
efficiency of ratio matching.

18.5 Denoising Score Matching

In some cases we may wish to regularize score matching, by fitting a distribution

psmoothed(m) = /pdata(y)Q(w | y)dy (1827)

rather than the true pgata. The distribution ¢(x | y) is a corruption process, usually
one that forms & by adding a small amount of noise to y.
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