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            in the denominator. A lower bound on the denominator provides only an upper

              bound on the expression as a whole, and there is no benefit to maximizing an

           upper bound. This makes it difficult to apply pseudolikelihood approaches to deep

           models such as deep Boltzmann machines, since variational methods are one of

          the dominant approaches to approximately marginalizing out the many layers of

         hidden variables that interact with each other. Nonetheless, pseudolikelihood is

             still useful for deep learning, because it can be used to train single-layer models

            or deep models using approximate inference methods that are not based on lower

bounds.

            Pseudolikelihood has a much greater cost per gradient step than SML, due to

         its explicit computation of all the conditionals. But generalized pseudolikelihood

            and similar criteria can still perform well if only one randomly selected condi-

           tional is computed per example ( , ), thereby bringing theGoodfellow et al. 2013b

       computational cost down to match that of SML.

       Though the pseudolikelihood estimator does not explicitly minimize  logZ  , it

            can still be thought of as having something resembling a negative phase. The

         denominators of each conditional distribution result in the learning algorithm

            suppressing the probability of all states that have only one variable differing from

  a training example.

            See Marlin and de Freitas 2011( ) for a theoretical analysis of the asymptotic

  efficiency of pseudolikelihood.

     18.4 Score Matching and Ratio Matching

          Score matching ( , ) provides another consistent means of training aHyvärinen 2005

  model without estimating Z        or its derivatives. The name score matching comes

             from terminology in which the derivatives of a log density with respect to its

argument, ∇x  log p(x    ), are called its score       . The strategy used by score matching

           is to minimize the expected squared difference between the derivatives of the

              model’s log density with respect to the input and the derivatives of the data’s log

     density with respect to the input:

 L ,(x θ) =
1

2
||∇x  log pmodel   ( ; )x θ ,−∇x  log pdata( )x ||22  , (18.22)

J( ) =θ
1

2
Epdata( )x   L , ,(x θ) (18.23)

θ∗ = min
θ

 J .( )θ (18.24)

        This objective function avoids the difficulties associated with differentiating
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  the partition function Z because Z     is not a function of x  and therefore ∇xZ = 0.
          Initially, score matching appears to have a new difficulty: computing the score

          of the data distribution requires knowledge of the true distribution generating

   the training data, pdata          . Fortunately, minimizing the expected value of isL ,(x θ)
      equivalent to minimizing the expected value of

˜  L ,(x θ) =

n�

j=1

�
∂2

∂x2j
 log pmodel   ( ; ) +x θ

1

2

�
∂

∂xj
 log pmodel  ( ; )x θ

�2�
 , (18.25)

      where is the dimensionality of .n x

        Because score matching requires taking derivatives with respect to x    , it is not

              applicable to models of discrete data but the latent variables in the model may be

discrete.

           Like pseudolikelihood, score matching only works when we are able to evaluate

log p̃(x            ) and its derivatives directly. It is not compatible with methods that provide

    only a lower bound on log p̃(x       ), because score matching requires the derivatives

   and second derivatives of log p̃(x         ), and a lower bound conveys no information about

           its derivatives. This means that score matching cannot be applied to estimating

          models with complicated interactions between the hidden units, such as sparse

           coding models or deep Boltzmann machines. While score matching can be used

               to pretrain the first hidden layer of a larger model, it has not been applied as

             a pretraining strategy for the deeper layers of a larger model. This is probably

           because the hidden layers of such models usually contain some discrete variables.

            While score matching does not explicitly have a negative phase, it can be

             viewed as a version of contrastive divergence using a specific kind of Markov chain

            ( , ). The Markov chain in this case is not Gibbs sampling, butHyvärinen 2007a

            rather a different approach that makes local moves guided by the gradient. Score

               matching is equivalent to CD with this type of Markov chain when the size of the

   local moves approaches zero.

             Lyu 2009( ) generalized score matching to the discrete case (but made an error in

              the derivation that was corrected by [ ]). ( ) foundMarlin et al. 2010 Marlin et al. 2010

that   generalized score matching      (GSM) does not work in high-dimensional

          discrete spaces where the observed probability of many events is 0.

           A more successful approach to extending the basic ideas of score matching

   to discrete data is  ratio matching     ( , ). Ratio matching appliesHyvärinen 2007b

           specifically to binary data. Ratio matching consists of minimizing the average over
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     examples of the following objective function:

L( )RM  ( ) =x θ,

n�

j=1

�
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pmodel( ; )x θ

pmodel ( ( ); )f x,j θ

�

�
2

 , (18.26)

             where returns with the bit at position flipped. Ratio matching avoidsf , j(x ) x j
            the partition function using the same trick as the pseudolikelihood estimator: in a

            ratio of two probabilities, the partition function cancels out. ( )Marlin et al. 2010

          found that ratio matching outperforms SML, pseudolikelihood and GSM in terms

             of the ability of models trained with ratio matching to denoise test set images.

      Like the pseudolikelihood estimator, ratio matching requires n  evaluations of p̃
         per data point, making its computational cost per update roughly n  times higher

   than that of SML.

           As with the pseudolikelihood estimator, ratio matching can be thought of as

             pushing down on all fantasy states that have only one variable different from a

          training example. Since ratio matching applies specifically to binary data, this

              means that it acts on all fantasy states within Hamming distance 1 of the data.

            Ratio matching can also be useful as the basis for dealing with high-dimensional

              sparse data, such as word count vectors. This kind of data poses a challenge for

          MCMC-based methods because the data is extremely expensive to represent in

             dense format, yet the MCMC sampler does not yield sparse values until the model

            has learned to represent the sparsity in the data distribution. Dauphin and Bengio

          ( ) overcame this issue by designing an unbiased stochastic approximation to2013

          ratio matching. The approximation evaluates only a randomly selected subset of

             the terms of the objective and does not require the model to generate complete

 fantasy samples.

            See Marlin and de Freitas 2011( ) for a theoretical analysis of the asymptotic

   efficiency of ratio matching.

   18.5 Denoising Score Matching

             In some cases we may wish to regularize score matching, by fitting a distribution

psmoothed( ) =x

�
pdata    ( ) ( )y q x y| dy (18.27)

   rather than the true pdata   . The distribution q(   x y|     ) is a corruption process, usually

            one that forms by adding a small amount of noise to .x y
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